613 research outputs found

    A Deep Optical Observation for an Enigmatic Unidentified Gamma-Ray Source 3EG J1835+5918

    Full text link
    We report a deep optical imaging observation by the Subaru telescope for a very soft X-ray source RX J1836.2+5925, which has been suspected to be an isolated neutron star associated with the brightest as-yet unidentified EGRET source outside the Galactic plane, 3EG J1835+5918. An extended source having a complex, bipolar shape is found at B ~ 26, and this might be an extended pulsar nebular whose flux is about 5-6 orders of magnitude lower than gamma-ray flux, although finding a galaxy of this magnitude by chance in the error circle is of order unity. We have found two even fainter, possibly point sources at B ~ 28, although their detections are not firm because of low signal-to-noise. If the extended object of B ~ 26 is a galaxy and not related to 3EG J1835+5918, a lower limit on X-ray/optical flux ratio is set as f_X/f_B >~ 2700, giving a further strong support of the neutron-star identification of 3EG J1835+5918. Interestingly, if either of the two sources at B ~ 28 is the real counterpart of RX J1836.2+5925 and thermal emission from the surface of an isolated neutron star, the temperature and distance to the source become ~ 4 x 10^5K and ~300pc, respectively, showing a striking similarity of its spectral energy distribution to the proto-type radio-quiet gamma-ray pulsar Geminga. No detection of nonthermal hard X-ray emission is consistent with the ASCA upper limit, if the nonthermal flux of 3EG J1835+5918/RX J1836.2+5925 is at a similar level with that of Gemiga.Comment: PASJ Letters in press. (Received March 26; Accepted May 17

    Model-independent constraints on reionization from large-scale CMB polarization

    Full text link
    On large angular scales, the polarization of the CMB contains information about the evolution of the average ionization during the epoch of reionization. Interpretation of the polarization spectrum usually requires the assumption of a fixed functional form for the evolution, e.g. instantaneous reionization. We develop a model-independent method where a small set of principal components completely encapsulate the effects of reionization on the large-angle E-mode polarization for any reionization history within an adjustable range in redshift. Using Markov Chain Monte Carlo methods, we apply this approach to both the 3-year WMAP data and simulated future data. WMAP data constrain two principal components of the reionization history, approximately corresponding to the total optical depth and the difference between the contributions to the optical depth at high and low redshifts. The optical depth is consistent with the constraint found in previous analyses of WMAP data that assume instantaneous reionization, with only slightly larger uncertainty due to the expanded set of models. Using the principal component approach, WMAP data also place a 95% CL upper limit of 0.08 on the contribution to the optical depth from redshifts z>20. With improvements in polarization sensitivity and foreground modeling, approximately five of the principal components can ultimately be measured. Constraints on the principal components, which probe the entire reionization history, can test models of reionization, provide model-independent constraints on the optical depth, and detect signatures of high-redshift reionization.Comment: 14 pages, 13 figures; submitted to Ap

    GRBs as Probes of the IGM

    Full text link
    Gamma-ray Bursts (GRBs) are the most powerful explosions known, capable of outshining the rest of gamma-ray sky during their short-lived prompt emission. Their cosmological nature makes them the best tool to explore the final stages in the lives of very massive stars up to the highest redshifts. Furthermore, studying the emission from their low-energy counterparts (optical and infrared) via rapid spectroscopy, we have been able to pin down the exact location of the most distant galaxies as well as placing stringent constraints on their host galaxies and intervening systems at low and high-redshift (e.g. metallicity and neutral hydrogen fraction). In fact, each GRB spectrum contains absorption features imprinted by metals in the host interstellar medium (ISM) as well as the intervening intergalactic medium (IGM) along the line of sight. In this chapter we summarize the progress made using a large dataset of GRB spectra in understanding the nature of both these absorbers and how GRBs can be used to study the early Universe, in particular to measure the neutral hydrogen fraction and the escape fraction of UV photons before and during the epoch of re-ionization.Comment: 18 pages; 5 Figures. Accepted for publication in Space Science Review

    The prompt optical/near-infrared flare of GRB 050904: the most luminous transient ever detected

    Get PDF
    With a redshift of z=6.295, GRB 050904 is the most distant gamma-ray burst ever discovered. It was an energetic event at all wavelengths and the afterglow was observed in detail in the near-infrared bands. We gathered all available optical and NIR afterglow photometry of this GRB to construct a composite NIR light curve spanning several decades in time and flux density. Transforming the NIR light curve into the optical, we find that the afterglow of GRB 050904 was more luminous at early times than any other GRB afterglow in the pre-\emph{Swift} era, making it at these wavelengths the most luminous transient ever detected. Given the intrinsic properties of GRB 050904 and its afterglow, we discuss if this burst is markedly different from other GRBs at lower redshifts.Comment: The Astronomical Journal, in press; revised version, including the comments of the referee (one figure added, text restructured, all conclusions unchanged), 7 pages, 3 figure

    Are There Any Redshift >8 Gamma-Ray Bursts in the BATSE Catalog?

    Full text link
    Several luminosity indicators have been found for Gamma-Ray Bursts (GRBs) wherein measurable light curve and spectral properties are well-correlated with the peak luminosity. Several papers have each applied one different luminosity relation to find redshifts for BATSE GRBs and claim to identify specific bursts with z>8. The existence of such high redshift events is not surprising, as BATSE has enough sensitivity to see them and GRBs are expected out to the redshift of the first star formation. To improve results we used five luminosity relations with updated calibrations to determine redshifts with error bars. Combining these relations, we calculated the redshifts of 36 BATSE GRBs with claimed z>8. Our results include 13 bursts with our derived best redshift z_best>8, which looks promising at first. But the calculated redshift uncertainties are significantly large in these selected cases. With only one exception, all of our bursts have z_1siglow<9. The one exception (BATSE trigger 2035) is likely a short duration burst at z>~4. Our best case for a very high redshift event is BATSE trigger 3142 with z_best>20 and z_1siglow=8.9, however we can only say z>4.1 at the two-sigma confidence level. In all, we cannot point toward any one BATSE burst as confidently having z>8. One implication is to greatly weaken prior claims that GRBs have a steeply rising rate-density out to high redshifts.Comment: ApJ in press, 18 page

    Very Strong TeV Emission as Gamma-Ray Burst Afterglows

    Get PDF
    Gamma-ray bursts (GRBs) and following afterglows are considered to be produced by dissipation of kinetic energy of a relativistic fireball and radiation process is widely believed as synchrotron radiation or inverse Compton scattering of electrons. We argue that the transfer of kinetic energy of ejecta into electrons may be inefficient process and hence the total energy released by a GRB event is much larger than that emitted in soft gamma-rays, by a factor of \sim (m_p/m_e). We show that, in this case, very strong emission of TeV gamma-rays is possible due to synchrotron radiation of protons accelerated up to \sim 10^{21} eV, which are trapped in the magnetic field of afterglow shock and radiate their energy on an observational time scale of \sim day. This suggests a possibility that GRBs are most energetic in TeV range and such TeV gamma-rays may be detectable from GRBs even at cosmological distances, i.e., z \sim 1, by currently working ground-based telescopes. Furthermore, this model gives a quantitative explanation for the famous long-duration GeV photons detected from GRB940217. If TeV gamma-ray emission which is much more energetic than GRB photons is detected, it provides a strong evidence for acceleration of protons up to \sim 10^{21} eV.Comment: 10 pages, no figure. To appear in ApJ Letter

    Infrared Spectral Energy Distribution of Galaxies in the AKARI All Sky Survey: Correlations with Galaxy Properties, and Their Physical Origin

    Full text link
    We have studied the properties of more than 1600 low-redshift galaxies by utilizing high-quality infrared flux measurements of the AKARI All-Sky Survey and physical quantities based on optical and 21-cm observations. Our goal is to understand the physics determining the infrared spectral energy distribution (SED). The ratio of the total infrared luminosity L_TIR, to the star-formation rate (SFR) is tightly correlated by a power-law to specific SFR (SSFR), and L_TIR is a good SFR indicator only for galaxies with the largest SSFR. We discovered a tight linear correlation for normal galaxies between the radiation field strength of dust heating, estimated by infrared SED fits (U_h), and that of galactic-scale infrared emission (U_TIR ~ L_TIR/R^2), where R is the optical size of a galaxy. The dispersion of U_h along this relation is 0.3 dex, corresponding to 13% dispersion in the dust temperature. This scaling and the U_h/U_TIR ratio can be explained physically by a thin layer of heating sources embedded in a thicker, optically-thick dust screen. The data also indicate that the heated fraction of the total dust mass is anti-correlated to the dust column density, supporting this interpretation. In the large U_TIR limit, the data of circumnuclear starbursts indicate the existence of an upper limit on U_h, corresponding to the maximum SFR per gas mass of ~ 10 Gyr^{-1}. We find that the number of galaxies sharply drops when they become optically thin against dust-heating radiation, suggesting that a feedback process to galaxy formation (likely by the photoelectric heating) is working when dust-heating radiation is not self-shielded on a galactic scale. Implications are discussed for the M_HI-size relation, the Kennicutt-Schmidt relation, and galaxy formation in the cosmological context.Comment: 29 pages including 28 figures. matches the published version (PASJ 2011 Dec. 25 issue). The E-open option was chosen for this article, i.e., the official version available from PASJ site (http://pasj.asj.or.jp/v63/n6/630613/630613-frame.html) without restrictio

    Positional Coincidence between the High-latitude Steady Unidentified Gamma-ray Sources and Possibly Merging Clusters of Galaxies

    Full text link
    We report an evidence for the first time that merging clusters of galaxies are a promising candidate for the origin of high galactic-latitude, steady unidentified EGRET gamma-ray sources. Instead of using past optical catalogs of eye-selected clusters, we made a matched-filter survey of galaxy clusters over 4\arcdeg \times 4\arcdeg areas around seven steady unidentified EGRET sources at |b|>45\arcdeg together with a 100 \sq \arcdeg area near the South Galactic Pole as a control field. In total, 154 Abell-like cluster candidates and 18 close pairs/groups of these clusters, expected to be possibly merging clusters, were identified within estimated redshift zest≤0.15z_{est}\leq 0.15. Five among the seven EGRET sources have one or two cluster pairs/groups (CPGs) within 1\arcdeg from them. We assess the statistical significance of this result by several methods, and the confidence level of the real excess is maximally 99.8% and 97.8% in a conservative method. In contrast, we found no significant correlation with single clusters. In addition to the spatial correlation, we also found that the richness of CPGs associated with EGRET sources is considerably larger than those of CPGs in the control field. These results imply that a part of the steady unidentified EGRET sources at high-latitude are physically associated with close CPGs, not with single clusters. We also discuss possible interpretations of these results. We argue that, if these associations are real, they are difficult to explain by hadronic processes, but best explained by the inverse-Compton scattering by high energy electrons accelerated in shocks of cluster formation, as recently proposed.Comment: 9 pages, 2 PostScript figures, uses emulateapj5.sty, added new analysis and discussion, ApJ accepte
    • …
    corecore